Algebra 1 Unit 10: Exponential Functions Notes

Day 3 - Transformations of Exponential Functions

Transformations of exponential functions is very similar to transformations with quadratic functions. Do you remember what a, h, and k do to the quadratic function?

Summary of Exponential Transformations

The general form of an exponential function is:

$$f(x) = a(b)^{x-h} + k.$$

*When your graph is shifted vertically, the y-intercept becomes a + k.

*When the graph is shifted vertically, the asymptote becomes y = k.

Algebra 1 Unit 10: Exponential Functions

Notes

Example: Find the y-intercept and asymptote of the following equations:

A. $f(x) = 3x \rightarrow f(x) = 3x + 3 \rightarrow 0$ y-intercept: $y = 3x + 3 \rightarrow 0$ $y = 3x \rightarrow 0$ y = 3x

asymptote:

C. $y = 3(0.4)^x \rightarrow y = 3(0.4)^x + 8$

y-intercept:

y-intercept: asymptote:

Algebra 1

Unit 10: Exponential Functions

Notes

Day 4 – Characteristics of Exponential Functions

As you can hopefully recall, you learned about characteristics of functions in Unit 2 with linear functions and Unit 5 with quadratic functions. We are going to apply the same characteristics, but this time to exponential functions.

functions. Domain and Range **Domain** Think: Define: Write: All possible values of x How far left to right does the Smallest $x \le x \le Biggest x$ *use < if the circles are open* graph go? Range Think: Define: Write: All possible values of y How far down to how far up does y < highest y value (opens down) the graph go? y > lowest y value (opens up) Domain: Domain: Range: Range: Domain: Domain: Range: Range:

12

Algebra 1	Unit 10: Exponential Functions	Notes
	Intercepts and Zeros	

Y-Intercept				
Define:	Think:	Write: /		
Point where the graph crosses the	At what coordinate point does the	(0, b) (7 +A_)		
y-axis	graph cross the/y-axis?			
X-Intercept X-Intercept				
Define:	Think:	Write:		
Point where the graph crosses the	At what coordinate point does the	(a, 0)		
x-axis	graph cross the x-axis?			
Zero				
Define:	Think:	Write:		
Where the function (y-value)	At what x-value does the graph	x =		
equals 0	cross the x-axis?			

X-intercept: **non**@ Zero: honc

Y-intercept: (0,4)

X-intercept: NOW

Zero: Norl (0,3) Y-intercept:

nonc Zero: Nonc X-intercept:

(0, -2)Y-intercept:

Maximum: More Minimum: More

Maximum: No Maximu

Asymptote: y = -4

Algebra 1 Unit 10: Exponential Functions Notes **End Behavior End Behavior** Define: Behavior of the ends of the function (what happens to the y-values or f(x)) as x approaches positive or negative infinity. The arrows indicate the function goes on forever so we want to know where those ends go. Think: Write: As x goes to the left (negative infinity), what direction As $x \rightarrow -\infty$, $f(x) \rightarrow$ ___ does the left arrow go? Think: Write: As x goes to the right (positive infinity), what direction As $x \to \infty$, $f(x) \to 0$ does the right arrow go? As x approaches -∞, f(x) approaches LEFT As x approaches ∞, f(x) approaches_ As x approaches ∞, f(x) approaches_

As x approaches -∞, f(x) approaches

As x approaches ∞, f(x) approaches_

Algebra 1

Unit 10: Exponential Functions

Notes

Average Rate of Change from a Graph

Average Rate of Change: Rate of change or slope for a given interval on a graph. The given interval is written using the inequality notation $a \le x \le b$, where a and b represent the initial and final x-value of the interval.

Calculate the average rate of change for the interval $0 \le x \le 2$

Calculate the average rate of change for the interval -1 \leq x \leq 2

Average Rate of Change from an Equation

If you are given an equation of a function and asked to calculate the average rate of change for that function over a given interval, you will substitute the initial x-value and the final x-value into the function to create two sets of ordered pairs. Then using the ordered pairs, substitute into the slope formula:

