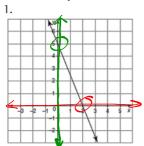

Foundations of Algebra Unit 5: Linear Functions Notes

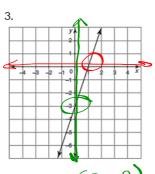
Day 11 - Characteristics of Linear Functions

One key component to fully understanding linear functions is to be able to describe characteristics of the graph and its equation. **Important**: If a graph is a line (arrows), we need to assume that it goes on forever.

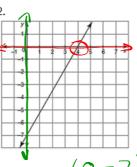
Domain and Range

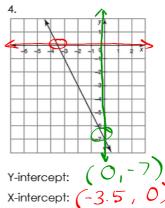


Foundations of Algebra Unit 5: Linear Functions Notes


X and Y intercepts (including zeros)

	Y-Intercept	
Define:	Think:	Write:
Point where the graph crosses	At what coordinate point does	(0, b)
the y-axis	the graph cross the y-axis?	
	X-Intercept	
Define:	Think:	Write:
Point where the graph crosses	At what coordinate point does	(g), 0) <u> </u>
the x-axis	the graph cross the x-axis?	
	Zero	
Define:	Think:	Write:
Where the function (y-value)	At what x-value does the graph	$x = \frac{\Delta}{2}$
equals 0	cross the x-axis?	


Linear Examples:


Y-intercept: (0,5)

Y-intercept: (0, -3)X-intercept (1, 0)Zero:

Y-intercept: (0, -7)
X-intercept: (4, 0) Zero:

3

Foundations of Algebra

Unit 5: Linear Functions

Notes

Interval of Increase and Decrease

Define: The part of the graph that is rising as you read left to right.

Interval of Increase Think: From left to right, is my graph going upş

Write: x value where it starts increasing < x < x value where it stops increasing

Interval of Decrease

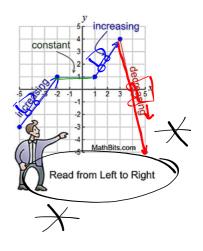
Define: The part of the graph that is falling as you read from left to right.

Think: From left to right, is my graph going Sowop

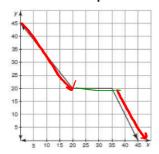
x value where it starts decreasing < x < x value where it stops decreasing

Write:

Interval of Constant


Define: The part of the

graph that is a horizontal line as you read from left to right.



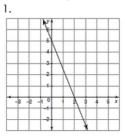
Write:

x value where it starts flat-lining < x < x value where it stops flat-lining

Non Linear Example:

Interval of Increase:

hone

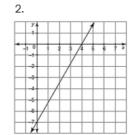

Interval of Decrease:

0< X < 20, 35 < X < 45

Interval of Constant:

204×435

Linear Examples:


Interval of Increase:

none

Interval of Decrease:

Interval of Constant:

hone

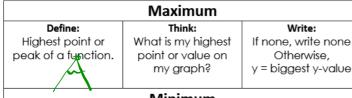
Interval of Increase:

Interval of Decrease:

none

Interval of Constant:

none

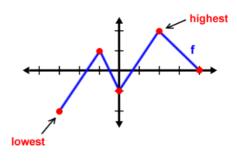

4

Foundations of Algebra

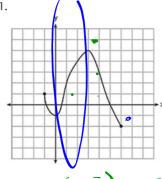
Unit 5: Linear Functions

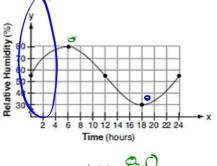
Notes

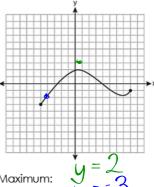
Maximum and Minimum (Extrema)



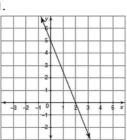
Minimum


Define: Lowest point or valley of a function.


Think: What is the lowest point or value on my graph?


Write: If none, write none Otherwise, y = smallest y-value

Non Linear Examples:



Maximum: Minimum:

Maximum: Minimum:

Maximum: Minimum:

Linear Examples:

Maximum: Minimum:

none none 2.

Maximum: Minimum:

none none

* NO CHANGE IN DIRECTION*