Unit 9 - Quadratic Equations

b. Are there two possible answers to part (a)? Why or why not?

Day 6 – Solving by Completing the Square

Some trinomials form special patterns that can easily allow you to factor the quadratic equation. We will look at two special cases:

Review: Factor the following trinomials.

(a) How does the constant term in the binomial relate to the b term in the trinomial?

(b) How does the constant term in the binomial relate to the c term in the trinomial?

Problems 1-3 are called **Perfect Square Trinomials**. These trinomials are called perfect square trinomials because when they are in their factored form, they are a binomial squared. An example would be $x^2 + 12x + 36$. Its factored form is $(x + 6)^2$, which is a binomial squared.

But what if you were not given the c term of a trinomial? Let's see if you can find the missing c term!

Directions: Complete the square for the following expressions. Then factor your expression.

$$\frac{b}{2} = \frac{a \cdot x^2 + a \cdot x + \frac{1}{2} + 2 \cdot 1^2}{2^2 = 4}$$

b.
$$x^2 + 8x + 16 = (x + 4)^2$$

b.
$$x^{2}+8x+1b=(x+4)^{2}$$
 c. $x^{2}+6x+9=(x+3)^{2}$ $\frac{8}{2}=4$ $4^{2}=16$ $\frac{6}{2}=3$ $3^{2}=9$

$$d x^2 + 14x + = 1$$

$$e_{x}x^{2}-2x+=0$$

d.
$$x^2 + 14x + \underline{\hspace{1cm}} = ($$
 $)^2$ e. $x^2 - 2x + \underline{\hspace{1cm}} = ($ $)^2$ $(x^2 - 18x + \underline{ 9}) = ($ $(x - \gamma)^2$

h.
$$x^2 - 20x + 100 = (X - 10)^2$$

$$\frac{1}{2} = 9 (-9) = 8$$

g.
$$x^2 - 12x + \underline{\hspace{1cm}} = ()^2$$
 h. $x^2 - 20x + \underline{/D0} = (\frac{1}{2})^2$

$$\frac{-20}{2} = -10 \quad (-10)^{2} = 100 \quad \frac{5}{2} = 2.5 \quad (2.5)^{2} = 156 \text{ er}$$

$$\frac{-20}{2} = -10 \quad (-10)^{2} = 100 \quad \frac{5}{2} = 2.5 \quad (2.5)^{2} = 156 \text{ er}$$

$$\frac{-7}{2} = -3.5 \quad 15(-3.5)^{2} = 12.25 \quad \frac{9}{2} = 4.5$$

j.
$$x^2 - 3x + \underline{\hspace{1cm}} = ($$
 $)^2$ k. $x^2 (7x) + 12.25 = (x)$ $\frac{-7}{2} = -3.5$ 15

Unit 9 - Quadratic Equations

Notes

Solving equations via "COMPLETING THE SQUARE":

The Equation:

STEP 1: move constant term to the other side)

STEP 2: make the left hand side a perfect square trinomial by adding $\left(\frac{b}{2}\right)^2$ to **both** sides

STEP 3: factor the left side, simplify the right side

STEP 4: solve by finding square roots

$x^{2} + 6x$ $x^{2} + 6x$ $x^{2} + 6x$ $x^{2} + 6x$	y + 2 = 0 y + 2 = -2 y + 9 = -2 + 9	<u>le</u> = 3
(x+3)	(x+3) = 7	$(3)^2 = 9$
$(x + 3)^2$	- 7 IVaulya camplata	d the square time to sel

 $(x+3)^2 = 7$ (You've completed the square – time to solve!)

$$\sqrt{(x+3)^2} = \sqrt{7}$$

$$x+3 = \sqrt{7}$$
 and $x+3 = -\sqrt{7}$

$$x = -3 + \sqrt{7}$$
 and $x = -3 - \sqrt{7}$

WE SHOULD ONLY USE THE COMPLETING THE SQUARE METHOD IF:

Group Practice: Solve for x.

1.
$$x^{2}-6x-72=0$$
 $+72+72$
 $x^{2}-6x+9=72$
 $+9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$
 $-6=-3(-3)^{2}=9$

Unit 9 - Quadratic Equations

Notes

$$3. x^2 - 14x - 59 = -20$$

4.
$$2x^2 - 36x + 10 = 0$$

X =

Unit 9 - Quadratic Equations

Notes

Day 7 – Finding the Vertex by Completing the Square

Think About It: In Unit 8, you learned to find the vertex of an equation in standard form by finding the x-value of the vertex using x = -b/2a. Today, you are going to learn how to use completing the square to find the vertex.

Take a look at the graph and conversion to standard form. How would you go from $g(x) = x^2 + 8x + 11$ to $g(x) = (x + 4)^2 - 5$?

$$g(x) = (x+4)^2 - 5$$

$$g(x) = (x+4)^2 - 5$$

$$g(x) = (x+4)(x+4) - 5$$

$$g(x) = x^2 + 8x + 16 - 5$$

$$g(x) = x^2 + 8x + 11$$

Vertex: (-4, -5)

Finding the Vertex by Completing the Square

To finding the vertex from standard form, we are only going to focus on the right side of the equation. Take a look at the following example from above, but this time, we are going from standard to vertex.

Steps	Reasoning/Justification
$y = x^2 + 8x + 11$	Original Equation
x ² + 8x + = -11 +	Move the constant term to the right side
x ² + 8x <u>+ 16</u> = -11 <u>+ 16</u>	Determine the missing "c" term
$(x + 4)^2 = 5$	Simplify the right side and determine the binomial squared on the left side.
$y = (x + 4)^2 - 5$	Move the term on the right back to the other side and set the equation equal to y.
Vertex: (-4, -5)	Name your vertex.