Algebra 1

Unit 9 - Quadratic Equations

Notes

Practice Finding the Vertex by Completing the Square

Find the vertex of the quadratic functions by completing the square.

a.
$$f(x) = x^2 + 6x + 11$$

b.
$$y = x^2 - 10x + 2$$

c.
$$g(x) = x^2 + 4x$$

d.
$$y = x^2 - 5x + 4$$

$$\frac{-6}{2} = -3$$

$$\sqrt{= x^{2} - 6x + 8}$$

$$-8$$

$$\sqrt{= x^{2} - 6x + 8}$$

$$-8$$

$$\sqrt{= x^{2} - 6x + 8}$$

$$-8$$

$$\sqrt{= x^{2} - 6x + 19}$$

$$| = (x - 3)(x - 3)$$

$$| = (x - 3)(x$$

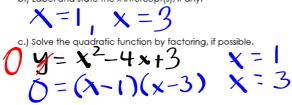
Algebra 1

Unit 9 - Quadratic Equations

Notes

Day 8/9: Solving by Quadratic Formula

Exploring the Nature of Roots

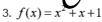

In this task you will investigate the number of real solutions to a quadratic equation.

1.
$$f(x) = x^2 - 4x + 3$$

a.) How many x-intercepts does the function have?

b.) Label and state the x-intercept(s), if any.

2.
$$f(x) = x^2 + 10x + 25$$

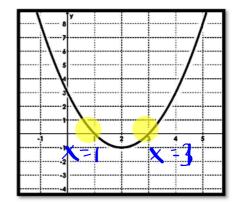

b.) Label and state the x-intercept(s), if any.

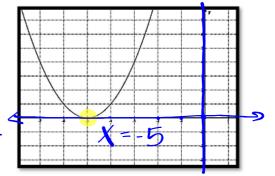
$$x = -5$$

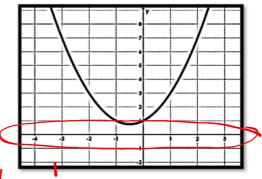
a.) How many x-intercepts does the function have?

hone

b.) Label and state the x-intercept(s), if any.


none


c.) Solve the quadratic function by factoring, if possible.


$$y=x^2+x+1$$

y=x²+x+1

not possible to factor.

Algebra 1

Unit 9 - Quadratic Equations

Notes

The Discriminant

Instead of observing a quadratic function's graph and/or solving it by factoring, there is an alternative way to determine the number of real solutions called the discriminant.

Given a quadratic function in standard form: $(ax^2 + (bx + c) = 0$, where $a \neq 0$,

The discriminant is found by using: b2 - 4ac

This value is used to determine the number of real solutions/zeros/roots/x-intercepts that exist for a quadratic equation.

Interpretation of the Discriminant (b2 – 4ac)

• If b² - 4ac is positive:

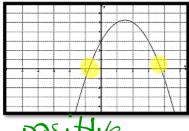
If b2 - 4ac is negative: Nohe

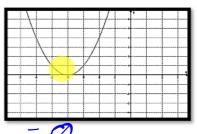
Practice: Find the discriminant for the previous three functions: a.) $f(x) = x^2 - 4x + 3$

 $\begin{array}{c} a = 1 \\ (-4)^2 - 4 \\ (1) (3) \\ (3) + (-1)^2 \end{array}$ $\begin{array}{c} b = -4 \\ (-1)^2 - 4 \\ (-1) = 4 \end{array}$ $\begin{array}{c} (-4)^2 - 4 \\ (-1)^2 - 4 \end{array}$ $\begin{array}{c} (-4)^2 - 4 \\ (-1)^2 - 4 \end{array}$ $\begin{array}{c} (-4)^2 - 4 \\ (-1)^2 - 4 \end{array}$ $\begin{array}{c} (-4)^2 - 4 \\ (-4)^2 - 4 \end{array}$

b.) $f(x) = x^2 + 10x + 25$

$$a = 10 c = 25$$
 $(10)^2 - 4(1)(25)$
 $100 - 100 = 6$


Discriminant:


of real zeros:

c.) $f(x) = x^2 + x + 1$

of real roots: No Solution

Practice: Determine whether the discriminant would be greater than, less than, or equal to zero.

discr, mhant