Foundations of Algebra	Unit 5: Linear Functions	Practice
Day 10 – Writing Equations of Lines	Name:	
Practice Assignment	Date:	Block:
Review 1. Solve the equation for x: 6x + 11 = -2x - 5	2. Solve for y: 4x – 2y =	12

Directions: Write the equation of the line given the slope and a point on the line in both slope intercept form. Then graph. **Slope Intercept Form**: y = mx + b b = y-intercept m = slope Point Slope Form: $y - y_1 = m(x - x_1)$ 3. (1, 2), slope = 3 4. (-2, 5), slope = -4 m = _____ b = _____ m = _____ b = _____ Slope Intercept Equation: Slope Intercept Equation: _____ 5. (3, -1), slope = -1 6. (4, 1), slope = $\frac{1}{2}$ m = _____ b = _____ m = _____ b = _____ Slope Intercept Equation: _____ Slope Intercept Equation: _____

Practice

- 7. Nick is given \$50 to spend on a vacation. He decides to spend \$5 a day. The amount Nick has left and the number of days are related.
- a. Complete the following (some may need to be calculated) Independent Quantity:

Dependent Quantity:

Slope:

Y-intercept:

Point(s):

Equation:

b. When will Nick have \$15 left?

8. Julio plans a diet to gain 0.2 kg a day. After 14 days he weighs 40 kg. The number days he diets and his weight are related.

a. Complete the following (some may need to be calculated) Independent Quantity:

Dependent Quantity:

Slope:

Y-intercept:

Point(s):

Equation:

b. When will Julio weigh 50 kg?

9. A plane loses altitude at the rate of 5 meters per second. It begins with an altitude of 8500 meters. The plane's altitude is a function of the number of seconds that pass.

a. Complete the following (some may need to be calculated) Independent Quantity:

Dependent Quantity:

Slope:

Y-intercept:

Point(s):

Equation:

b. When will the plane land (hint: what is the altitude when the plane lands?)