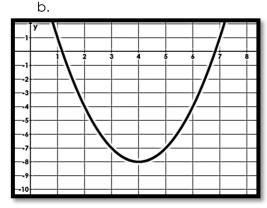
Directions: Answer the following questions to comparing quadratic functions.

b.

1. Which quadratic function has the bigger y-intercept? Explain why.

a. $y = -x^2 + 3x + 8$


X	-4	-3	-2	-1	0	1
У	9	13	19	13	9	7

2. Which quadratic function has the smallest y-intercept? Explain why.

a. $y = x^2 + 4x - 12$ b. y = (x + 3)(x - 3)c. $y = (x + 2)^2 - 13$

3. Which quadratic function has the lower minimum value? Explain why. a. b.

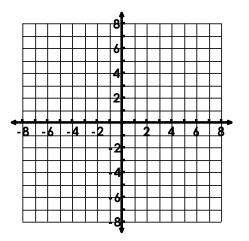
X	-4	-3	-2	-1	0	1
У	0	-5	-8	-9	-8	-5

4. Which quadratic function has the bigger minimum value? Explain why.

a. $y = (x + 4)^2 + 2$ b. y = -(x + 3)(x + 1)

C		-	-	-		
C.	х	2	3	4	5	6
	У	0	-1	0	3	8

Algebra 1

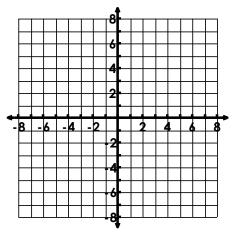

5. Two seagulls dive into the ocean. The given functions represent the height of each seagull above the surface of the ocean as a function of the seagull's horizontal distance from a center buoy. For each set of functions, **determine which bird descends deeper into the ocean**. Support your answer with facts (work). a.

First Seagull:
$$f(x) = 3(x-2)^2 - 5$$

Second Seagull: $g(x) = \{(-8,0), (-6,-4), (-4,0)\}$

b.
First Seagull:
$$f(x) = 3x^2 - 12x + 7$$

Second Seagull: $g(x) = \frac{1}{2}(x+2)^2 - 6$


c.
First Seagull:
$$f(x) = 2x^2 - 8x + 11$$

Second Seagull: $x -3 -1 1 3 5$
 $g(x) 11 6 3 2 3$

- 6. Which function has the lesser maximum value? Why?
- A. Parabola with no x-intercepts and a < 0? OR

Use the graphs to help explain your answer.

B. Parabola with two x-intercepts and a < 0?

