Evaluate each exponential function for the stated value.

1.
$$f(x) = \frac{1}{3}(6)^{x} : x = 2$$

 $f(2) = \frac{1}{3}(6)^{2}$
 $f(2) = 12$

2.
$$f(n) = 10(2)^n$$
; $f(-2)$
 $f(-2) = (0(2)^{-2}$
 $f(-2) = 2.5$

Answer the following word problems:

4. If a basketball is bounced from a height of 20 feet, the function $f(x) = 20(0.9)^x$ gives the height of the ball in feet of each bounce, where x is the bounce number. What will be the height of the 6th bounce? Round your answer to the nearest tenth of a foot.

$$f(x) = 20(0.9)^{x}$$

$$f(b) = 20(0.9)^{6}$$

$$f(b) = 10.6 \text{ feet}$$

5. Suppose the depth of a lake can be described by the function $y = 334(0.976)^x$ where x represents the number of weeks from today. Today, the depth of the lake is 334 ft. What will be the depth in 6 weeks? Round your answer to the nearest whole number.

7.

Name the asymptote for each graph:

8 Y 6 6 2

Directions: Decide whether each of the following is an example of exponential growth (increase) or decay (decrease) and explain why. Then state the y-intercept.

y=1.5x 9. y=5x

b>1,50

Growth V-int (0,1) $y = 1 \cdot 11 \cdot 12^{x}$ 10. $y = \left(\frac{1}{2}\right)^{x}$

026-1,50

Decay 1)

 $y = -1.3^{x}$ 11. $y = -3^{x}$

b>1,50

Growth Or

12. $y = 2\left(\frac{4}{3}\right)^x$

= 1.33: b>1, so

Directions: Create an equation to represent each table or graph.

13

X	У
-1	1.5
. 0	3),2
1	6 × 1
2	12 VX2

14.

Volleyball Tournament	
Round	Teams Left
1	16
2	8 > 1/2
3	8 x 1/2
4	2 KX12

15

16.

17.

21.

