Algebra 1	Unit 3: Systems of Equations & Inequalities		
Name:	Block:		

Unit 3: Systems of Equations and Inequalities

In this unit, you will learn how to do the following:

Learning Target #1: Graphing Systems of Equations and Inequalities

- · Identify the solution to a system from a graph or table
- Graph systems of equations
- · Graph systems of inequalities
- Determine solutions to a system of equations or inequalities
- Use a graphing calculator to solve a system of equations

Learning Target #2: Solving Systems of Equations Algebraically

- Use substitution to solve a system of equations
- Use elimination to solve a system of equations
- · Determine the best method for solving a systems of equations

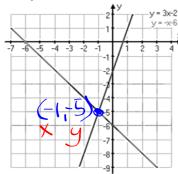
Learning Target #3: Applications of Systems

• Write, solve, and interpret systems of equations for problem situations

Mon, 2/3	<u>Tue, 2/4</u>	Wed, 2/5	<u>Thurs, 2/6</u>	<u>Fri, 2/7</u>
Day 1:	Day 2:	Day 3:	Day 4:	Day 5:
Graphing Systems of	Graphing Systems of	Solving Systems by	Solving Systems by	Applications with
Equations	Inequalities	Substitution	Elimination	Systems
			Quiz	
Mon, 2/10	<u>Tues, 2/11</u>	Wed, 2/12	Thurs, 2/13	Thurs, 2/14
Review	Unit 3 Test	Day 1:	Day 2:	Day 3:
		Simplifying and	Adding/Subtracting	Irrational/Rational
		Multiplying Radicals	Radicals	Numbers

Tutoring Times

	Monday	Tuesday	Wednesday	Thursday	Friday
AM	Mrs. Jackson 7:45 – 8:15 Room 1210	Mr. Phillips 7:45 – 8:15 Room 1206	Mrs. Jackson & Mr. Webb 7:45 – 8:15 Room 1210 Room 1205	Mr. Watson & Mr. Phillips 7:45 – 8:15 Room 1208 Room 1206	Mr. Watson 7:45 – 8:15 Room 1208
PM	NONE	Mrs. Petersen 3:30 - 4:30 Room 1210	NONE	NONE	NONE


Unit 3: Systems of Equations & Inequalities

Notes

Day 1 – Graphing Systems of Equations

Two or more linear equations in the same variable form a system of equations. A solution to a system is a pair of numbers \underline{a} and \underline{b} for which x = a and y = b to make each equation a true statement. A solution is also the point where the two equations intersect each other on a graph.

Example: Find the solution of the linear equation and check your answer.

J=3x-2
$$-5=3(-1)-2$$

$$-5=-5$$

$$-5=-5$$

$$-5=-5$$

Examples: Check whether the ordered pair is a solution of the system of linear equations.

Examples: Check whether the ordered pair is a solution of the system of linear equations.

Ex. (1, 1)
$$2x + y = 3$$

$$x - 2y = -1$$

$$2x + y = 3$$

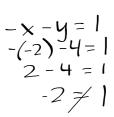
$$2(1) + (1) = 3$$

$$2 + 1 = 3$$

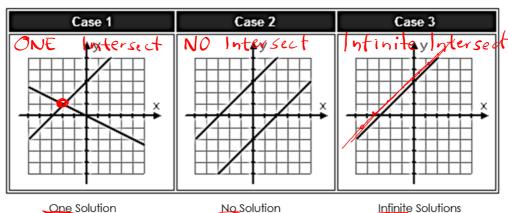
$$3 = 3v$$

$$-1 = -1$$

$$-3 + 4 = -4$$


$$-2 + 1$$

$$-3 + 4 = -4$$

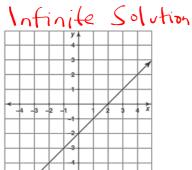

$$-2 + 1$$

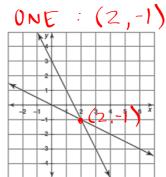
$$-3 + 4 = -4$$

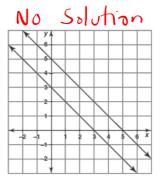
$$-2 + 1$$

A system of equations can have three different types of solutions: no solution, one solution, or infinite solutions. Look at the graph below to determine how these solutions look on a graph.

One Solution Intersecting Lines Consistent/Independent

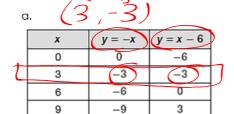

No Solution Parallel Lines Inconsistent


Infinite Solutions One line Consistent/Dependent


Unit 3: Systems of Equations & Inequalities

Notes

Practice: Tell how many solutions the systems of equations has. If it has one solution, name the solution.



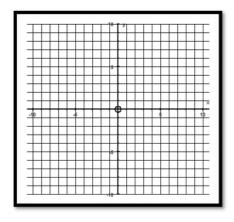
Identify Solutions to a System from a Table

Remember, that the solution to a system of equations is where the two lines intersect each other. The point of the intersection is the solution. Using the tables below, identify the solution.

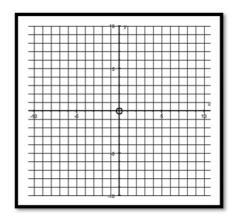
b).	(1,6	<i>)</i>	
	х	y=2x+4	y=4x+2	
	-2	0	-6	
	-1	2	-2	
	0	4	2	
	1	6	6	>

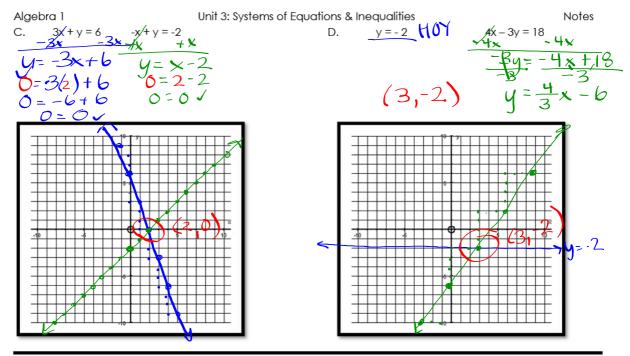
Solving a Linear System by Graphing

Step 1: Write each equation in slope intercept form (y = mx + b).


Step 2: Graph both equations in the same coordinate plane.

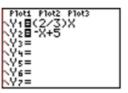
Step 3: Estimate the coordinates of the point of intersection.

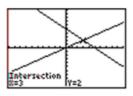

Step 4: Check whether the coordinates give a true solution by substituting them into each equation of the original linear system.


Example: Use the graph and check method to solve the linear equations.

A.
$$y = x - 2$$
 $y = -x + 4$

B.
$$y = -\frac{1}{2}x - 1$$
 $y = \frac{1}{4}x - 4$

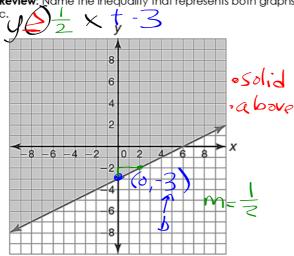

Using a Graphing Calculator to Solve a Systems of Equations

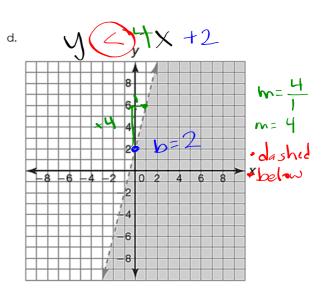

Use a graphing calculator to solve the following systems of equations: $y = \frac{2}{3}x$ y = -x + x

- 1. Hit \mathbf{Y} = and enter the first equation into y_1 and the second equation into y_2 (as shown on the right)
- 2. Hit **Graph** (Hit **Zoom**, then **6** to get back to a standard viewing window, if necessary).
- 3. To find the solution, hit 2^{nd} , followed by Trace (you really want the Calc feature), followed by 5: Intersect
- 4. The calculator will say:

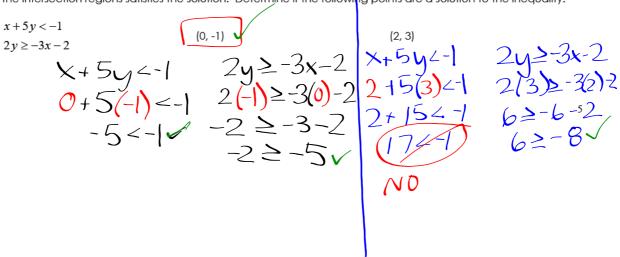
First Curve: Make sure cursor is on one of the lines, hit Enter Second Curve: Make sure cursor moved to second line, hit Enter Guess: hit Enter

- 5. The point of intersection will named at the bottom of the screen (as shown to the right.
- 6. You can also use the table on the graphing calculator to find the solution as well by hitting 2^{nd} followed by **Graph** (you really want the Table feature). Scroll through the table until you find where the y_1 and y_2 values are the same.


Unit 3: Systems of Equations & Inequalities


Notes

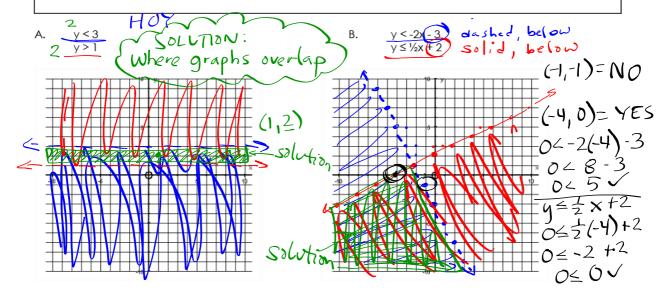
Day 2 – Graphing Systems of Inequalities

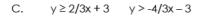

Review: Graph each inequality. Name a solution that would satisfy the inequality. Solid above below yb=4

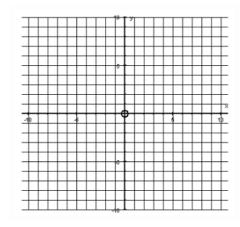
Review: Name the inequality that represents both graphs.

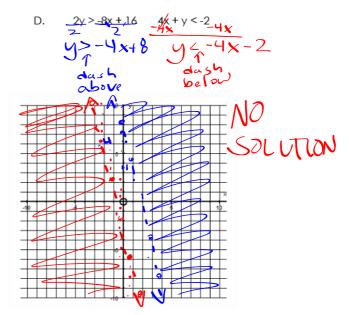
The solution of a system of linear inequalities is the intersection of the solution to each inequality. Every point in the intersection regions satisfies the solution. Determine if the following points are a solution to the inequality:

Unit 3: Systems of Equations & Inequalities


Notes

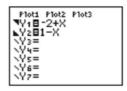

Steps for Graphing Systems of Inequalities


Step 1: Graph the boundary lines of each inequality. Use dashed lines if the inequality is < or >. Use a solid line if the inequality is \le or \ge .


Step 2: Shade the appropriate half plane for each inequality.

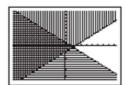
Step 3: Identify the solution of the system of inequalities as the intersection of the half planes from Step 2.

Unit 3: Systems of Equations & Inequalities


Notes

Using a Graphing Calculator to Solve a Systems of Inequalities

Example: Use your graphing calculator to name three solutions to the system of inequalities: $y \ge -2 + x$ $y \le 1 - x$


Step 1: Hit **Y=** and enter your equations into the Y_1 and Y_2 spots.

Step 2: Move the cursor to the left of Y_1 and press **ENTER** until you see the graph style that describes the shading of your inequality symbols ($>/\ge$ will shade above and $</\le$ will shade below). You have to tell the calculator what direction to shade so it is crucial you understanding how the shading relates to the inequality symbol.

Step 3: Do the same thing for Y_2 .

Step 4: Hit GRAPH.

Using your graphing calculator is a great way to check to see if you graphed your systems of inequalities correctly.

Note: The calculator will always graph solid lines. You have to use the Inequalz App to if you want the graphing calculator to differentiate between dashed and solid lines.

Using a Graphing Calculator to Solve a Systems of Inequalities using Inequalz App (TI-84 only)

APPLICATIONS

†Deutsch
:Español
:Français
:FunSci
:GeoMastr
HInequalz

\$LearnChk

- Step 1: Press APPS and scroll down to :Inequalz and hit ENTER.
- Step 2: Enter your expressions in for Y₁ and Y₂ and then move over to the equal sign.
- **Step 3:** Press **ALPHA** and then one of the five keys in the top row of your calculator to select the equality or inequality sign you want for both y_1 and y_2 .

Step 4: Press GRAPH.

If you only want to see the shaded region, press **ALPHA**, then **F1** to select Shades. Select **1:Ineq Intersection**. Only the solution region – the region where all inequalities intersect is shown.

To Quit the InequalZ App:

Press APPS, scroll down to :Inequalz, press ENTER, and select 2:QuitInequal.