Algebra 1 Unit 2 Linear Functions Notes

Day 2: Graph Lines, Slope, Rate of Change

What you just calculated was the **slope** of the line. Slope can be described in several ways:

- Steepness of a line
- Rate of change rate of increase or decrease
- Rise

Run Change (difference) in y over change (difference) in x Slope can be calculated in several different ways: tables, formulas, word problems, graphs, and equations

Slope from a Formula

In the above problems with the table, you had to calculate the difference in two y-values first before you calculated the difference in two x-values. This leads us to the slope formula which can be used to calculate the slope of any two points.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

where (x_1, y_1) & (x_2, y_2) are coordinate points

Ex. Calculate the slope of two points using the slope formula.

Algebra 1 Unit 2 Linear Functions Notes

Real World Slopes

If a graph, table, equation, or context represents a real world situation, the slope has a meaning that can be interpreted as a rate of change. For the following representations, calculate the slope and interpret it as a rate of change.

Slope/Rate of Change: $M = \frac{3}{4} = 0.75$ Slope/Rate of Change: $\frac{3}{5}$ Slope/Rate of Chan

cost of a total of \$12.60. What is the rate of cost per number of toppings for a large pizza?

$$943x = 12.60$$
 $3x - 3.60$
 $x = 12.60$
 $x = 12.60$

Algebra 1 Unit 2 Linear Functions Notes

Slope from a Graph

When you graph equations, you have to be able to identify the slope and y-intercept from the equation.

Step 1: Solve for y (if necessary)

Step 2. Plot the y-intercept.

Step 3: From the y-intercept, use the slope to calculate another point on the graph.

Step 4: Connect the points with a ruler or straightedge.

D.
$$y = \frac{5}{3}x - 3$$
 m = ____ b = ____

Unit 2.1.notebook January 24, 2020

Algebra 1 Unit 2 Linear Functions Notes

When graphing horizontal and vertical lines, you will have one variable set equal to a constant. Whatever constant the variable is set equal to represents that value in a coordinate point. For example, if you have y = 2, all coordinate points must have a value of 2 and x can be whatever you want. Pick 3 points to graph the lines below.

8