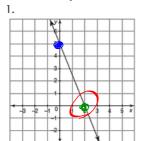

Algebra 1 Unit 2 Linear Functions Notes

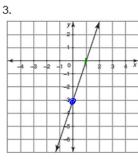
# Day 5 - Characteristics of Linear Functions

One key component to fully understanding linear functions is to be able to describe characteristics of the graph and its equation. **Important**: If a graph is a line (arrows), we need to assume that it goes on forever.

## **Domain and Range**

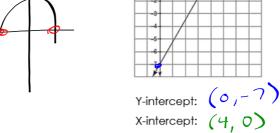



Algebra 1 Unit 2 Linear Functions Notes


### X and Y intercepts (including zeros)

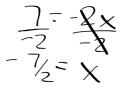
| Y-Intercept $M = m \times + \sqrt{D}$ |                                |        |  |  |
|---------------------------------------|--------------------------------|--------|--|--|
| Define:                               | Think:                         | Write: |  |  |
| Point where the graph crosses         | At what coordinate point does  | (0, b) |  |  |
| the y-axis                            | the graph cross the y-axis?    |        |  |  |
| X-Intercept                           |                                |        |  |  |
| Define:                               | Think:                         | Write: |  |  |
| Point where the graph crosses         | At what coordinate point does  | (a, 0) |  |  |
| the x-axis                            | the graph cross the x-axis?    |        |  |  |
| Zero                                  |                                |        |  |  |
| Define:                               | Think:                         | Write: |  |  |
| Where the function (y-value)          | At what x-value does the graph | x =    |  |  |
| equals 0                              | cross the x-axis?              |        |  |  |

### **Linear Examples:**

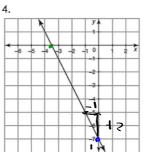



Y-intercept: (0,5 X-intercept




Y-intercept: (0,-3) X-intercept Zero:






2.

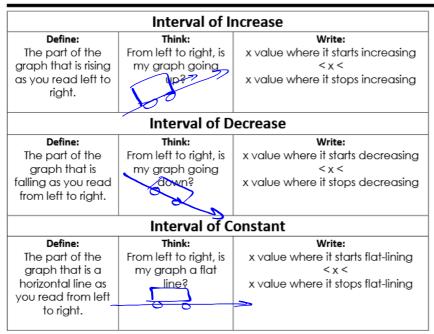


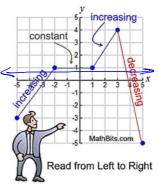


X=-3.5

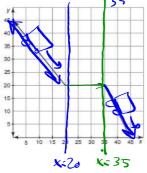


Y-intercept: (0, 7)X-intercept: (-3.5,0)Zero:





17

Unit 2.1.notebook January 30, 2020


Algebra 1 Unit 2 Linear Functions Notes

#### Interval of Increase and Decrease

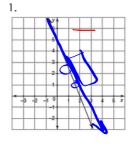




Non Linear Example:



Interval of Increase:


NONE

Interval of Decrease:

-∞<x<20. 35< x<∞ Interval of Constant:

704x435

**Linear Examples:** 



Interval of Increase:

NoInterval of Decrease:

Interval of Constant: NO

2.

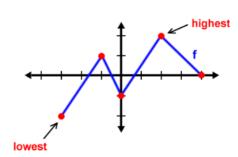
Interval of Increase:

Interval of Decrease:

none

Interval of Constant:

non e


18

Algebra 1 Unit 2 Linear Functions Notes

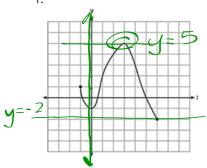
## Maximum and Minimum (Extrema)

| Maximum                                             |                                                       |       |
|-----------------------------------------------------|-------------------------------------------------------|-------|
| <b>Define:</b> Highest point or peak of a function. | Think: What is my highest point or value on my graph? | If no |
|                                                     |                                                       |       |

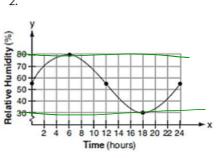
Write: one, write none Otherwise, biggest y-value



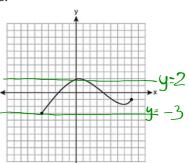
**Minimum** 


Define: Lowest point or valley of a function.

Think: What is the lowest point or value on my graph?


Write: If none, write none Otherwise, y = smallest y-value

Non Linear Examples:



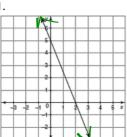



2.



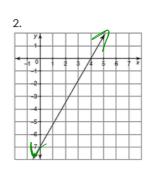
3.




Maximum: 9=5Minimum:

Maximum: Minimum:

Maximum: Minimum:


### **Linear Examples:**





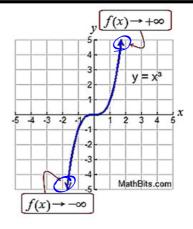
Maximum: M me

Minimum:

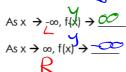


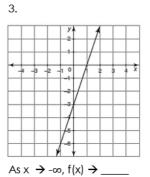
nene Maximum:

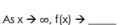
Minimum: none Algebra 1 Unit 2 Linear Functions Notes

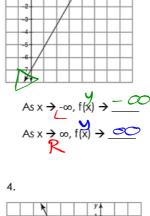

### **End Behavior**

# End Behavior


### Define:


Behavior of the ends of the function (what happens to the y-values or f(x)) as x approaches positive or negative infinity. The arrows indicate the function goes on forever so we want to know where those ends go.


| Think:                             | Write: / 🗸                                                                      |  |
|------------------------------------|---------------------------------------------------------------------------------|--|
| As x goes to the left (negative    | As $x \rightarrow -\infty$ , $f(x) \rightarrow \underline{\hspace{1cm}}$        |  |
| infinity), what direction does the | L                                                                               |  |
| left arrow go?                     |                                                                                 |  |
|                                    |                                                                                 |  |
| Think:                             | Write: ✓ 🗸                                                                      |  |
| As x goes to the right (positive   | Write: $\mathcal{S}$<br>As $x \to \infty$ , $f(x) \to \underline{\hspace{1cm}}$ |  |
| infinity), what direction does the | R                                                                               |  |
| right arrow go?                    | , –                                                                             |  |
|                                    |                                                                                 |  |
















As 
$$x \rightarrow \infty$$
,  $f(x) \rightarrow$ \_\_\_\_

20