Get out 2.1 Notes - we are going to jump right into notes today so you have plenty of time to practice and ask questions before your test tomorrow.

Foundations of Algebra

Unit 2: Complex Number Systems

Notes

Day 5: Classifying & Comparing Kational & Irrational Numbers

Rational Numbers:

- o Can be expressed as the quotient of two integers (i.e. a fraction) with a denominator that is not zero.
- o Counting/Natural, Integers, Fractions, and Terminating & Repeating decimals are rational numbers.
- o Many people are surprised to know that a repeating decimal is a rational number.
- o $\sqrt{9}$ is rational you can simplify the square root to 3 which is the quotient of the integers 3 and 1.

Examples: -5, 0, 7, 3/2, 0.26

Irrational Tumbers:

Can't be expressed as the quotient of two integers (i.e. a <u>fraction</u>) such that the denominator is not zero

o If your number contains π , a radical (not a perfect square), or a decimal that goes on forever (does not repeat), it is an irrational number.

Examples: $\sqrt{7}$, $\sqrt{5}$, π , 4.569284....

11

Foundations of Algebra

Unit 2: Complex Number Systems

Notes

Adding Rational and Irrational Numbers

		Rational		
	+	5	1/2	0
Rational	5	10	5 1/2	5°
	1/2	5%	1	1/2 1
ا مق	0	5°	1/2 8	OF

12

Foundations of Algebra

Unit 2: Complex Number Systems

Notes

Multiplying Rational and Irrational Numbers

Multiplying Two Rational Numbers				
Conclusion:				
The product of two rational numbers is ALWAYS rational.				

*If you ever multiply an irrational number by 0 (which is a rational number), your outcome will always be 0, which is a rational number. Most of the time, when multiplying, it will say a nonzero rational number, which means 0 is excluded from the rational number set.

Ex. $\sqrt{2} \cdot 0 = 0$

Ex. $\pi \cdot 0 = 0$

Homework:

- Day 4 HW
- Radical Study Guide
- Study for your Radical Test!