# **Exponential Functions**

# **Day 1** – **Graphing Exponential Functions**

Exploring with Graphs: Graph the following equations:



How is Equation C different from Equations A and B (you have already learned about equations A & B).

# **Graphing Exponential Functions**



When you graph exponential functions, you will perform the following steps:

#### **Graphing Exponential Functions Steps**

- 1. Create an x-y chart with 5 values for x (Use table feature to pick 5 values)
- 2. Substitute those values into the function and record the y or f(x) values.
- 3. Graph each ordered pair on a graph.

Notes

Algebra 1

Graph the following: a.  $y = 3(4)^{x}$ 



Notes

Asymptote:

Y-intercept:



b.  $f(x) = 2^{x}$ 







c. y =  $3\left(\frac{1}{2}\right)^x$ 



Y-intercept:

Asymptote:



#### Algebra 1



#### Think about it...

You have two ways you can find the y-intercept when given an equation:  $y = 3(4)^{\times}$ 

1.

2.

# Summary of Different Types of Exponential Graphs

| Equation                        | 'a' values | 'b' values | General Shape of Graph |  |  |
|---------------------------------|------------|------------|------------------------|--|--|
|                                 |            |            |                        |  |  |
| y = 3(4)×                       |            |            |                        |  |  |
| $f(x) = 2^x$                    |            |            |                        |  |  |
|                                 |            |            |                        |  |  |
| $x = 2(1)^{x}$                  |            |            |                        |  |  |
| $y = 3\left(\frac{1}{2}\right)$ |            |            |                        |  |  |
| $f(x) = A(25)^{x}$              |            |            |                        |  |  |
| 1(x) - 4(.23)                   |            |            |                        |  |  |

# Day 2 – Transformations of Exponential Functions

Transformations of exponential functions is very similar to transformations with quadratic functions. Do you remember what a, h, and k do to the quadratic function?

A: \_\_\_\_\_\_ H: \_\_\_\_\_\_ K: \_\_\_\_\_\_



#### Notes

#### **Practice Identifying Transformations**

**Example:** Describe the transformations from the parent function to the transformed function: A.  $f(x) = 3^x \rightarrow f(x) = 3^{x+3}$ B.  $y = (5)^x \rightarrow y = \frac{1}{2}(5)^x - 4$ C.  $y = (0.4)^x \rightarrow y = -3(0.4)^x + 8$ 

D.  $f(x) = 3^{x} \rightarrow f(x) = \frac{3}{4}(3)^{x-2}$ E.  $y = 5^{x} \rightarrow y = -\frac{1}{2}(5)^{x+2}$ F.  $y = 0.4^{x} \rightarrow y = 2(0.4)^{x} - 6$ 

#### **Example:** Using the graphs of f(x) and g(x), described the transformations from f(x) to g(x):



**Example:** Using the function  $g(x) = 5^x$ , create a new function h(x) given the following transformations:

A. up 4 units

B. left 2 units

C. down 7 units and right 3 units

D. stretch by 3

E. reflect over x-axis and left 3

F. Shrink by 1/2 and reflect over x-axis

As you can hopefully recall, you learned about characteristics of functions in Unit 2 with linear functions and Unit 5 with quadratic functions. We are going to apply the same characteristics, but this time to exponential functions.

|                                            | Domain and Range                                             |                                                                            |
|--------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------|
|                                            | Domain                                                       |                                                                            |
| <b>Define:</b><br>All possible values of x | <b>Think:</b><br>How far left to right does the<br>graph go? | Write:<br>Smallest x ≤ x ≤ Biggest x<br>*use < if the circles are open*    |
|                                            | Range                                                        |                                                                            |
| <b>Define:</b><br>All possible values of y | Think:<br>How far down to how far up does<br>the graph go?   | Write:<br>y < highest y value (opens down<br>y > lowest y value (opens up) |





Domain:

Range:



Domain:

Range:

Domain:

Range:



Domain:

Range:

## **Intercepts and Zeros**

| Y-Intercept                       |                                   |        |  |  |
|-----------------------------------|-----------------------------------|--------|--|--|
| Define:                           | Think:                            | Write: |  |  |
| Point where the graph crosses the | At what coordinate point does the | (0, b) |  |  |
| y-axis                            | graph cross the y-axis?           |        |  |  |
| X-Intercept                       |                                   |        |  |  |
| Define:                           | Think:                            | Write: |  |  |
| Point where the graph crosses the | At what coordinate point does the | (a, 0) |  |  |
| x-axis                            | graph cross the x-axis?           |        |  |  |
|                                   | Zero                              |        |  |  |
| Define:                           | Think:                            | Write: |  |  |
| Where the function (y-value)      | At what x-value does the graph    | x =    |  |  |
| equals 0                          | cross the x-axis?                 |        |  |  |







X-intercept:

Zero:

Y-intercept:

X-intercept:



X-intercept:



Zero:

Y-intercept:

Y-intercept:



X-intercept:

Zero:

Y-intercept:

# **Extremas and Asymptotes**

|                                                                                     | Maximum                                                  |        |
|-------------------------------------------------------------------------------------|----------------------------------------------------------|--------|
| Define:                                                                             | Think:                                                   | Write: |
| Highest point of a function.                                                        | What is my highest point on my<br>graph?                 | y =    |
|                                                                                     | Minimum                                                  |        |
| Define:                                                                             | Think:                                                   | Write: |
| Lowest point of a function.                                                         | What is the lowest point on my<br>graph?                 | y =    |
|                                                                                     | Asymptotes                                               |        |
| Define:                                                                             | Think:                                                   | Write: |
| A line that the graph get closer<br>and closer to, but never touches or<br>crosses. | What values does my graph begin<br>to flat line towards? | y =    |



Maximum:

Minimum:

Asymptote:



Maximum:

Minimum:

Asymptote:



Maximum:

Minimum:

Asymptote:



Maximum:

Minimum:

Asymptote:

# Intervals of Increase and Decrease

| Interval of Increase                                                                          |                                                                 |                                                         |  |  |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--|--|
| <b>Define:</b><br>The part of the graph that is<br>rising as you read left to right.          | <b>Think:</b><br>From left to right, is my graph<br>going up?   | Write:<br>An inequality using the x-value of the vertex |  |  |
| Interval of Decrease                                                                          |                                                                 |                                                         |  |  |
| <b>Define:</b><br>The part of the graph that is<br>falling as you read from left<br>to right. | <b>Think:</b><br>From left to right, is my graph<br>going down? | Write:<br>An inequality using the x-value of the vertex |  |  |
|                                                                                               |                                                                 | <i>y</i>                                                |  |  |



Interval of Increase:

Interval of Decrease:



Interval of Increase:

Interval of Decrease:

## End Behavior

| End Behavior                                                                                                                                                                                                        |                                                  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|
| Define:                                                                                                                                                                                                             |                                                  |  |  |
| Behavior of the ends of the function (what happens to the y-values or f(x)) as x approaches positive or negative infinity. The arrows indicate the function goes on forever so we want to know where those ends go. |                                                  |  |  |
| Think:                                                                                                                                                                                                              | Write:                                           |  |  |
| As x goes to the left (negative infinity), what direction<br>does the left arrow go?                                                                                                                                | As $x \rightarrow -\infty$ , $f(x) \rightarrow $ |  |  |
| Think:                                                                                                                                                                                                              | Write:                                           |  |  |
| As x goes to the right (positive infinity), what direction<br>does the right arrow go?                                                                                                                              | As $x \rightarrow \infty$ , $f(x) \rightarrow $  |  |  |



|      | 1  | 8  | y            |   |   |    |
|------|----|----|--------------|---|---|----|
| -    |    | -  |              | - | - | -  |
| -    | -  | 6- |              | - | - | -  |
|      |    | 1  |              |   |   | Č. |
|      | _  | 1  |              | _ | _ | _  |
| -    | -  | 2  | $\mathbf{N}$ | 2 | - | -  |
|      |    |    | Ī            | - | - | X  |
| -4 - | -2 | 0  |              | 2 |   | 4  |
|      | 1  |    | 1            |   |   |    |

| As x approaches -∞, f(x) approaches |  |
|-------------------------------------|--|

As x approaches ∞, f(x) approaches \_\_\_\_



As x approaches  $-\infty$ , f(x) approaches \_\_\_\_\_.

As x approaches  $\infty$ , f(x) approaches \_\_\_\_\_.

As x approaches  $-\infty$ , f(x) approaches \_\_\_\_\_.

As x approaches ∞, f(x) approaches \_\_\_\_\_.





## Average Rate of Change from a Graph

Average Rate of Change: Rate of change or slope for a given interval on a graph. The given interval is written using the inequality notation  $a \le x \le b$ , where a and b represent the initial and final x-value of the interval.



Calculate the average rate of change for the interval  $0 \le x \le 2$ 



Calculate the average rate of change for the interval  $-1 \le x \le 2$ 



Calculate the average rate of change for the interval  $0 \le x \le 2$ 



Calculate the average rate of change for the interval  $0 \le x \le 1$ 

# Average Rate of Change from an Equation

If you are given an equation of a function and asked to calculate the average rate of change for that function over a given interval, you will substitute the initial x-value and the final x-value into the function to create two sets of ordered pairs. Then using the ordered pairs, substitute into the slope formula. a.  $y = 3^x$ ;  $1 \le x \le 3$ b.  $y = 2(1/2)^x$ ;  $-4 \le x \le 0$