Vertex Form of a Quadratic Function:

$$
y=a(x-h)^{2}+k
$$

a determines how the graph opens
positive a, graph opens \qquad
negative a, graph opens \qquad

1 \qquad
\qquad) is our vertex.

NOTE: Our vertex is at (h, k), NOT ($-h, k$).

Identifying the Vertex Practice

Find the vertex of the following:

1) $y=(x-18)^{2}+9 \quad$ Vertex $=(\ldots, \quad, \quad$)
2) $y=4(x+6)^{2}-7 \quad$ Vertex $=$ \qquad , ___
3) $y=(x-2)^{2}-2 \quad$ Vertex $=1$ \qquad , \qquad

Find the vertex for each of the following quadratics and determine whether the graph opens up or down:
a) $y=(x-1)^{2}-2$

Vertex $=1$ \qquad , ___) Graph Opens \qquad because a is \qquad
b) $y=-3(x+4)^{2}+1$

Vertex $=1$, ___)) Graph Opens \qquad because a is \qquad
C) $y=2 x^{2}+3$

Vertex $=1$ \qquad , ___)) Graph Opens \qquad because a is \qquad
d) $y=-(x-3)^{2}$

Vertex $=1$ \qquad , ___)) Graph Opens \qquad because a is \qquad

Steps for Graphing in Vertex Form

1) Find the vertex (h, k).
2) Use your vertex as the center for your table and determine two x values to the left and right of your h value and substitute those x values back into the equation to determine the y values.

- Using practice problem number 3, let's practice filling in our table.

$$
y=(x-2)^{2}-2
$$

x					
y					

3) Plot your points and connect them from left to right!

Graphing in Vertex Form Examples

Example 1: Graph $y=(x-1)^{2}-2$.

Vertex $=($ \qquad , \qquad

Example 2: Graph: $y=-3(x+4)^{2}+1$.

Vertex $=1$ \qquad , _-

Example 3: Graph $y=2 x^{2}+3$.

Vertex $=1$ \qquad , \qquad

\mathbf{x}					
\mathbf{y}					

Example 4: Graph: $y=-(x-3)^{2}$.

Vertex = \qquad ,

\mathbf{x}					
\mathbf{y}					

Using a Graphing Calculator to Graph Quadratics in Vertex Form

Use a graphing calculator to graph our last example problem, example 4: $y=-(x-3)^{2}$

1. Hit $\mathbf{Y}=$ and enter the equation into y_{1}.
2. Hit Graph (Hit Zoom, then $\mathbf{6}$ to get back to a standard viewing window, if necessary).
3. You can also use the table on the graphing calculator to compare to your table and note the symmetry along the vertex. Hit $\mathbf{2}^{\text {nd }}$ followed by Graph (you really want the Table feature). Scroll through the table until you find where the y_{1} values stop decreasing and begin increasing, the point it switches at is our vertex.

Characteristics of Quadratics

One key component to fully understanding quadratic functions is to be able to describe characteristics of the graph and its equation.

Domain and Range

Define:

All possible values of x

Define:
All possible values of y

Domain

Think:
How far left to right does the graph go?

Range

Think:

How far down to how far up does the graph go?

Write:

Smallest $x \leq x \leq$ Biggest x
use < if the circles are open

Write:
$y \leq$ highest y value (opens down) $y \geq$ lowest y value (opens up)

Graph 1

Domain:

Range:
Graph 3

Domain:

Range:

Graph 2

Domain:
Range:
Graph 4

Domain:

Range:

Y-Intercept

Think:

Write:

Define:
Point where the graph crosses the y-axis

At what coordinate point does the graph cross the y-axis?

X-Intercept

Think:
At what coordinate point does the graph cross the x-axis?

Zero

Think:
At what x-value does the graph cross the x-axis?
(0,b)

Write:
(a, 0)

Write:
$\mathrm{x}=$ \qquad

Graph 1

X-intercepts:
Y-intercept:
Zeros:

Graph 3

X-intercepts:
Y-intercept:
Zeros:

Graph 4

X-intercepts:
Y-intercept:
Zeros:
Graph

Graph 2

X-intercepts:
Y-intercept:
Zeros:

Vertex \& Axis of Symmetry

Graph 3

Vertex:
Axis of Symmetry:

Graph 4

Vertex:
Axis of Symmetry:

Extrema

Maximum

Define:
Highest point or peak of a function.

Think:
What is my highest point on my graph?

Minimum

Think:
What is the lowest point on my graph?

Write:

$y=k$
(y-value of the vertex)

Write:

$y=k$
(y-value of the vertex)

Graph 1

Extrema:
Min/Max Value:

Graph 3

Extrema:

Min/Max Value:

Graph 4

Extrema:

Min/Max Value:

End Behavior

End Behavior

Define:
Behavior of the ends of the function (what happens to the y-values or $f(x)$) as x approaches positive or negative infinity. The arrows indicate the function goes on forever so we want to know where those ends go.

Think:
As x goes to the left (negative infinity), what direction does the left arrow go?

Think:
As x goes to the right (positive infinity), what direction does the right arrow go?

Write:

As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad

Write:
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad

Graph 1

As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad .

As $x \rightarrow \infty, f(x) \rightarrow$ \qquad .

Graph 3

As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad .

As $\mathrm{x} \rightarrow \infty, \mathrm{f}(\mathrm{x}) \rightarrow$ \qquad ـ.

Graph 2

As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad -.

As $x \rightarrow \infty, f(x) \rightarrow$ \qquad .

As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad —.

As $x \rightarrow \infty, f(x) \rightarrow$ \qquad _.

	Interval of Increase	
Define:	Think:	
The part of the graph that is	From left to right, is my graph	An inequality using the x-value of the vertex
rising as you read left to right.	going up?	

Interval of Decrease

Define:

The part of the graph that is falling as you read from left to right.

Think:
Write:
An inequality using the x-value of the vertex going down?

Graph 1

Interval of Increase:
Interval of Decrease:

Graph 3

Interval of Increase:
Interval of Decrease:

Graph 2

Interval of Increase:
Interval of Decrease:

Graph 4

Interval of Increase:
Interval of Decrease:

Practice: Describe the characteristics of the following graphs:

Domain \qquad
Vertex: \qquad

Y-Intercept: \qquad
Extrema:
Int of Inc:
Positive: \qquad
End Behavior: As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad

Domain:
Vertex:
Y-Intercept: \qquad
Extrema: \qquad
Int of Inc: \qquad

Positive: \qquad
End Behavior: As $x \rightarrow-\infty, f(x) \rightarrow$
. As $x \rightarrow \infty, f(x) \rightarrow$
Range:
Axis of Sym.

Zeroes:

\qquad
Max/Min Value: \qquad Int of Dec: \qquad Negative: \qquad
\qquad

Range:
Axis of Sym.
Zeroes: \qquad
Max/Min Value: \qquad Int of Dec: \qquad
Negative: \qquad . As $x \rightarrow \infty, f(x) \rightarrow$ \qquad

Range:

Axis of Sym.

Zeroes:

\qquad
Max/Min Value: \qquad
Int of Dec: \qquad
Negative: \qquad . As $x \rightarrow \infty, f(x) \rightarrow$

Domain: \qquad
Vertex: \qquad
Y-Intercept: \qquad
Extrema: \qquad
Int of Inc: \qquad
Positive: \qquad
End Behavior: As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad . As $x \rightarrow \infty, f(x) \rightarrow$

Extrema: \qquad
Int of Inc: \qquad
Positive: \qquad
End Behavior: As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad . As $x \rightarrow \infty, f(x) \rightarrow$

Quadratic Transformations

The parent function of a function is the simplest form of a function. The parent function for a quadratic function is $\mathbf{y}=\mathbf{x}^{2}$ or $\mathbf{f}(\mathbf{x})=\mathbf{x}^{2}$. Graph the parent function below.

\mathbf{x}	\mathbf{x}^{2}
-3	
-2	
-1	
0	
1	
2	
3	

The U-shaped graph of a quadratic function is called a
\qquad .

The highest or lowest point on a parabola is called the

One other characteristic of a quadratic equation is that one of the terms is always \qquad —.

There are several different forms a quadratic function can be written in, but the one we are going to work with for today is called vertex form. In the following explorations below, you are going to learn the effect of a, h, and k values have on the parent graph.

$$
\begin{gathered}
\text { Vertex Form } \\
f(x)=a(x-h)^{2}+k
\end{gathered}
$$

Vertex: \qquad

The K Value $\sim y=x^{2}+k$
Describe the transformations and name the vertex. Create an equation for the graphs listed below.

Given the transformations listed below, create an equation that would represent the transformations.

1. Shifted up 8 units
2. Shifted up 20 units
3. Shifted down 5 units

The H Value $\sim y=(x-h)^{2}$
Describe the transformations and name the vertex. Create an equation for the graphs listed below.

Given the transformations listed below, create an equation that would represent the transformations.

1. Shifted right 8 units
2. Shifted left 20 units
3. Shifted left 5 units

Practice: Identify the transformations and vertex from the equations below.

Equation

1. $y=(x-2)^{2}+4$
2. $y=(x+3)^{2}-2$
3. $y=(x-9)^{2}-5$
4. $y=(x+5)^{2}+6$

Describe the transformations from the given function to the transformed function.
a. $f(x)=x^{2} \rightarrow f(x)=4 x^{2}$
b. $y=x^{2} \rightarrow y=1 / 4 x^{2}$
c. $f(x) \rightarrow 6 f(x)$
d. $f(x)=x^{2} \rightarrow f(x)=-x^{2}$
f. $y=x^{2} \rightarrow y=-1 / 2 x^{2}$
g. $f(x) \rightarrow-4 f(x)$

Putting It All Together with A, H, and K

Practice: Given the equations below, name the vertex and describe the transformations:
Equation
Transformations
Vertex

1. $y=-(x-4)^{2}+7$
2. $y=-2(x+2)^{2}+5$
3. $y=1 / 2(x-3)^{2}-8$

Practice: Create an equation to represents the following transformations:
a. Shifted down 4 units, right 1 unit, and reflected across the x-axis
b. Shifted up 6 units, reflected across the x-axis, and stretch by a factor of 3
c. Shifted up 2 units, left 4 units, reflected across the x-axis, and shrunk by a factor of $3 / 4$.

