Day 1-Solve by Factoring

General Steps:

1. Check to see if the polynomial has a greatest common factor.
2. Set up two empty sets of parenthesis below the polynomial.
3. The first numbers must (_) (_) multiply together to equal the first term, $\mathbf{a} \mathbf{x}^{2}$.
4. The second numbers

5. Multiply the outside terms added together, they should

6. Check your answer by multiplying the two binomials together.

Review of Factoring Types:

Factoring $\mathbf{A}=\mathbf{1}$	Difference of Two Squares
Factor: $x^{2}+3 x-18$	Factor: $x^{2}-16$

Factoring A not 1	Factoring by GCF
Factor: $2 x^{2}-13 x+15$	Factor: $x^{2}-6 x$

Practice with Solving Quadratic Equations by Factoring

1. $y=x^{2}-14 x+48$
2. $y=x^{2}-6 x+9$

Factored Form: \qquad
Zeros: \qquad
3. $5 x=x^{2}-6$
4. $y=x^{2}-9$

Factored Form: \qquad
Factored Form: \qquad

Zeroes: \qquad Zeroes: \qquad
5. $-x^{2}=2 x+1$
6. $2 x^{2}-6 x=0$

Factored Form: \qquad

Zeroes: \qquad

Factored Form: \qquad

Zeroes: \qquad

Day 2 - Solving by Finding Square Roots/Completing the Square

Solving by Finding Square Roots :

REMEMBER WHEN SOLVING FOR X YOU GET A \qquad AND \qquad ANSWER!

Solve the following for x :

1) $x^{2}=49$
2) $x^{2}=20$
3) $7 x^{2}-6=57$
4) $10 x^{2}+9=499$
5) $2 x^{2}+8=170$
6) $x^{2}=0$
7) $\frac{1}{2}(x+8)^{2}=14$
8) $-2(x+3)^{2}-16=-48$
9) $3(x-4)^{2}+7=67$

Solving by Completing the Square:

The Equation:
STEP 1: move constant term to the other side)
STEP 2: make the left hand side a perfect square trinomial by adding $\left(\frac{b}{2}\right)^{2}$ to both sides
STEP 3: factor the left side, simplify the right side

STEP 4: solve by finding square roots

$$
\begin{aligned}
& x^{2}+6 x+2=0 \\
& x^{2}+6 x+\overline{9}=-2 \\
& x^{2}+6 x+9=-2+9
\end{aligned}
$$

$(x+3)^{2}=7$ (You've completed the square - time to solve!)
$\sqrt{(x+3)^{2}}=\sqrt{7}$
$x+3=\sqrt{7}$ and $x+3=-\sqrt{7}$
$x=-3+\sqrt{7}$ and $x=-3-\sqrt{7}$

Solve for x .

1. $x^{2}-6 x-72=0$
2. $x^{2}+80=18 x$
$X=$ \qquad
3. $x^{2}-14 x-59=-20$
4. $2 x^{2}-36 x+10=0$
$X=$ \qquad $X=$ \qquad

Day 3 - Solving by Quadratic Formula

What method do you use when your equations are not factorable, but are in standard form, and a may not be 1 and b may not be even?

The Quadratic Formula

for equations in standard form: $y=a x^{2}+b x+c$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

x represents the zeros and $b^{2}-4 a c$ is the discriminant

For the quadratic equations below, use the quadratic formula to find the solutions. Write your answer in simplest radical form.

1) $4 x^{2}-13 x+3=0 \quad a=$ \qquad $b=$ \qquad $c=$ \qquad
2) $9 x^{2}+6 x+1=0$
$a=$ \qquad $b=$ \qquad $c=$ \qquad

Discriminant: \qquad Discriminant: \qquad
Solutions: \qquad Zeros: \qquad
3) $6 x^{2}+3=10 x \quad a=\ldots \quad b=\ldots \quad c=$
\qquad
\qquad 4) $\frac{1}{2} x^{2}+6 x+13=0 a=$ \qquad $b=$ \qquad $c=$ \qquad

Discriminant: \qquad
$X=$ \qquad
Discriminant: \qquad
Roots: \qquad

