Day 1- Solve by Factoring

General Steps:

1. Check to see if the polynomial has a greatest common factor.

2. Set up two empty sets of parenthesis below the polynomial.

6. Check your answer by multiplying the two binomials together.

Review of Factoring Types:

Factoring A = 1	Difference of Two Squares
Factor: x ² + 3x - 18	Factor: x ² – 16

Algebra 1 Solving Qua	dratic Equations Notes
Factoring A not 1	Factoring by GCF
Factor: 2x ² – 13x + 15	Factor: x² – 6x
Factoring with GCF & A = 1	Factoring with GCF and A not 1
Factor: 3x ² – 3x – 60	Factor: 10x ² – 22x + 4

Practice with Solving Quadratic Equations by Factoring

1. $y = x^2 - 14x + 48$ 2. $y = x^2 - 6x + 9$

Factored Form: _____

Zeros: _____

Factored Form:	

Zeros:			

3. $5x = x^2 - 6$

Factored Form:	Factored Form:
Zeroes:	Zeroes:

5. $-x^2 = 2x + 1$

6. $2x^2 - 6x = 0$

4. $y = x^2 - 9$

Factored Form:	Factored Form:
Zeroes:	Zeroes:3

Day 2 - Solving by Finding Square Roots/Completing the Square

Solving by Finding Square Roots :

Solve the following for x: 1) $x^2 = 49$	2) $x^2 = 20$	3) $7x^2 - 6 = 57$
4) $10x^2 + 9 = 499$	5) $2x^2 + 8 = 170$	6) $x^2 = 0$

7)
$$\frac{1}{2}(x+8)^2 = 14$$

8) $-2(x+3)^2 - 16 = -48$
9) $3(x-4)^2 + 7 = 67$

Solving by Completing the Square:

The Equation:

- STEP 1: move constant term to the other side)
- STEP 2: make the left hand side a perfect square trinomial by adding $\left(\frac{b}{2}\right)^2$ to **both** sides

STEP 3: factor the left side, simplify the right side

$$x^{2} + 6x + 2 = 0$$

$$x^{2} + 6x + \underline{\qquad} = -2$$

$$x^{2} + 6x + \underline{9} = -2 + \underline{9}$$

 $(x+3)^2 = 7$ (You've completed the square – time to solve!)

$$\sqrt{(x+3)} = \sqrt{7}$$

 $x+3 = \sqrt{7}$ and $x+3 = -\sqrt{7}$
 $x = -3 + \sqrt{7}$ and $x = -3 - \sqrt{7}$

Solve for x.

1. $x^2 - 6x - 72 = 0$

2. $x^2 + 80 = 18x$

 $\sqrt{(22+2)^2}$ $\sqrt{7}$

X = _____

3. $x^2 - 14x - 59 = -20$

4. $2x^2 - 36x + 10 = 0$

X = _____

X = _____

X = _____

Day 3 - Solving by Quadratic Formula

What method do you use when your equations are not factorable, but are in standard form, and a may not be 1 and b may not be even?

For the quadratic equations below, use the quadratic formula to find the solutions. Write your answer in simplest radical form.

1) $4x^2 - 13x + 3 = 0$ $a = ____ b = ___ c = ____$ **2)** $9x^2 + 6x + 1 = 0$ $a = ___ b = ___ c = ____$

Discriminant: _____

Discriminant: _____

Solutions: _____

Zeros: _____

3) $6x^2 + 3 = 10x$ $a = ___ b = __ c = ___$

4) $\frac{1}{2}x^2 + 6x + 13 = 0$ a = ____ b = ____ c = ____

Discriminant: _____

Discriminant: _____

X = _____

Roots: _____