Algebra 1 11.1 Sequence Review

Name	•
------	---

Name:_____ Date: _____ Period: _____

What you need to know & be able to do 13. Arithmetic & Geometric Sequences	Arithmetic: Explicit: $a_n = a_1 + (n - 1)d$ Recursive: $a_1 = __$ $a_n = a_{n-1} + d$ Geometric: Explicit: $a_n = a_1 \cdot r^{n-1}$ Recursive: $a_1 = __$	Examples			
		a. Create a simplified explicit and recursive formula for the following: -4, -9, -14, -19	b. Create an explicit and recursive formula for the following: 81, 27, 9, 3,		
	a _n = r(a _{n-1}) You must always know your first term and the constant ratio/common difference to write an explicit formula!	c. Determine the 9 th term in the sequence: 5, 15, 45,	d. Given the sequence -3, 0, 3, 6 find the 32 nd term.		
		e. Determine the first five terms of the sequence: $a_n = -2 \cdot 3^{n-1}$	f. Determine the first five terms of the sequence: $a_1 = 6$ $a_n = \frac{1}{2}(a_{n-1})$		
		g. Determine the first five terms of the sequence: $a_1 = 7$ $a_n = a_{n-1} - 3$	h. Determine the first five terms of the sequence: a _n = -5n + 2.		

	i. Write the explicit formula given the following arithmetic sequence: a4 = 6 and a5 = 2	following c	geometric se 13 = -18 and 6	a ₄ = -54
14. Sequence Applications	a. The table shows a car's value for 3 ye a. Does this table form an arithmetic or geometric sequence? Explain how you b. Create an explicit formula to represe c. How much is the car worth after 8 ye	tic or w you know. <u>Year Value (\$)</u> <u>1</u> 18,000 <u>2</u> 15,300 <u>3</u> 13,005 present the table.		