Day 6 - Solving Systems Using Elimination

Yesterday, you learned how to solve systems by either having to add the equations together or multiply one of the equations by a constant and then add. Sometimes, you may have to multiply both equations by a constant in order to solve. Try the following equations below:

Steps for Solving Systems by Elimination

- **Step 1**: Arrange the equations with like terms in columns.
- **Step 2**: Analyze the coefficients of x or y. <u>Multiply one or both equations by an appropriate number</u> to obtain new coefficients that are <u>opposites</u>
- **Step 3**: Add the equations and solve for the remaining variable.
- **Step 4**: Substitute the value into either equation and solve.
- Step 5: Check the solution by substituting the point back into both equation.

Problem Solving with Elimination

1. Love Street is have a sale on jewelry and hair accessories. You can buy 5 pieces of jewelry and hair accessories for 34.50 or 2 pieces of jewelry and 16 hair accessories for \$33.00. This can be modeled by the

5x + 8y = 34.50How much is each piece of jewelry and hair accessories?

a. What does x and y represent?

X= \$ of jewelry Y= \$ of hair access. the system of equations

b. Explain what the first equation represents: 5x + 8y = 34.50If you buy 5 pieces of and 8 hair access. It will

c. Explain what the second equation represents: $2 \times 10 \text{ m} = 33.00$

2. A test has twenty questions worth 100 points. The test consists of True/False questions worth 3 points each and multiple choice questions worth 11 points each. This can be modeled by $\begin{cases} x+y=20 \\ 3x+11y=100 \end{cases}$. How many multiple choice and True/False questions are on the test?

a. What does x and y represent?

X=# 37/F

y= # of multiple choice b. Explain what the first equation represents: X + Y = 2

d. Solve the system of equations: 44 = 20D>

The questions and M.C. gust.

is a total of 20 gust.

c. Explain what the second equation represents: $3x + 1 \cdot y = 100$

For 3 points per T/F quest and 11 points per MC, equals a total of 100 pts

16

How Many Solutions to the System?

Method		One Solution	No Solutions	Infinite Solutions
Graphing	Best to use when: Both equations are in slope intercept form. (y = mx + b)			
	EX: y = 3x - 1 y = -x + 4 Solutions are integer coordinate points (no decimals or fractions)	Solution is the point of intersection.	Lines are parallel and do not intersect. (Slopes are equal)	Lines are identical and intersect at every point.
		Different Slope Different y-intercept	Same Slope Different y-intercept	Same Slope Same y-intercept (Same Equations)
Substitution	Best to use when: One equation has been solved for a variable or both equations are solved for the same variable. EX: y = 2x + 1 or y = 3x - 1 3x - 2y = 10 y = -x + 4	After substituting and simplifying, you will be left with: x = # y = # Solution will take the form of (x, y)	After substituting, variables will form zero pairs and you will be left with a FALSE equation.	After substituting, variables will form zero pairs and will leave you with a TRUE equation.
Elimination	Best to use when: Both equations are in standard form. (Ax + By = C) Coefficients of variables are opposites. 3x + 6y = 5 -3x - 8y = 2 Equations can be easily made into opposites using multiplication. -2(4x + 2y = 5) 8x - 6y = -5	After eliminating and simplifying, you will be left with: x = # y = # Solution will take the form of (x, y)	After eliminating, variables will form zero pairs and you will be left with a FALSE equation. 0 = 5	After eliminating, variables will form zero pairs and will leave you with a TRUE equation. 0 = 0