Unit 6: Quadratic Functions
Name: \qquad
Date: \qquad Period: \qquad

What you need to	Things to remember	Examples	
1. Describe transformations from an equation or graph	$y=a(x-h)^{2}+k$ a: stretches/shrinks \& reflects h : shifts left \& right k: shifts up \& down vertex: (h, k)	a. Describe the transformations and name the vertex: $y=-2(x+3)^{2}-9$	a. Describe the transformations and name the vertex:
2. Create a function using transformations	Determine your, a, h, and k values	a. Opens down, shifts up 3 units and shrinks by $1 / 4$	b. Shifts left 5 and reflects across the x axis
3. Describe the domain and range.	-Domain: all possible values for x -Range: all possible values for y -"How far up or down does your graph go?" -written as an inequality	a. Domain: Range:	b. Domain: Range:
4. Describe the intercepts and zeros.	Zeros and x intercepts are the same thing. Zeros: $\mathrm{x}=$ \qquad X-int: $(p, 0)(q, 0)$ Y-int: ($0, c$)	a. x-intercepts: y-intercept:	b. x-intercepts: y-intercept:

5. Describe the vertex, axis of symmetry, extrema, and $\min / m a x$ values.	Vertex: highest or lowest point Axis of Symmetry: x value of the vertex; written as $x=$ Extrema: Max or Min? Max/Min Value: What's the lowest or highest your graph goes; written as y =	a. Vertex: Axis of Sym: Extrema: Max/Min Value:	b. Vertex: Axis of Sym: Extrema: Max/Min Value:
6. Describe the end behavior.	Which direction are the ends of the graph headed? To positive or negative infinity?	a. As $x \rightarrow-\infty, f(x) \rightarrow$ As $x \rightarrow \infty, f(x) \rightarrow$	b. As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad As $x \rightarrow \infty, f(x) \rightarrow$ \qquad
7. Describe the intervals of increase or decrease.	Draw your axis of symmetry and create an inequality to represent to the left and right of the axis of symmetry. Then determine which direction the graph is going on the left and then on the right using your inequalities.	a. Interval of Increase: Interval of Decrease:	b. Interval of Increase: Interval of Decrease:
8. Describe the positive and negative parts of the graph	Determine which parts of the graph are above or below the x-axis. Use inequalities to describe the different regions using the x intercepts.	a. Positive: Negative:	b. Positive: Negative:

9. Applications of the Vertex	Maximum/Minimum indicate finding the vertex. Describe what you know about your equation before completing any solving. Interpret the vertex in terms of what x and y represent.	a. The height in feet of a rocket after x second is given by $y=-16 x^{2}+128 x$. What is the maximum height reached by the rocket and how long does it take to reach that height?	b. The arch of bridge is modeled by the equation $y=-1 / 4(x-50)^{2}+95$, where x represent the horizontal distance (in feet) and y represents the vertical distance (in feet). What is the maximum height of the arch?
	C. A missile is launched along a path determined by the equation $f(x)=-2 x^{2}+$ $72 x$, where $f(x)$ is the height of the missile in feet x seconds after the launch. A plane is flying nearby at a height of 650 feet. Is the plane in danger? Why or why not?		

