Unit 7: Exponential Functions

Day 1 - Graphing Exponential Functions

Exploring with Graphs: Graph the following equations:
a. y $=2 \mathrm{x}$

\mathbf{x}	-3	-2	-1	0	1	2	3
\mathbf{y}							

C. $y=2^{x}$							
x	-3	-2	-1	0	1	2	3
y							

Type: \qquad Type: \qquad Type: \qquad
How is Equation C different from Equations A and B (you have already learned about equations A \& B).

Graphing Exponential Functions

When you graph exponential functions, you will perform the following steps:

Graphing Exponential Functions Steps

1. Create an $x-y$ chart with 5 values for x (Use table feature to pick 5 values)
2. Substitute those values into the function and record the y or $f(x)$ values.
3. Graph each ordered pair on a graph.

Algebra 1
Graph the following:
a. $y=3(4)^{x}$

b. $f(x)=2^{x}$

c. $y=3\left(\frac{1}{2}\right)^{x}$

d. $f(x)=4(.25)^{x}$

\mathbf{x}	\mathbf{y}
Y-intercept:	

Think about it...
You have two ways you can find the y-intercept when given an equation: $y=3(4)^{x}$
1.
2.

Summary of Different Types of Exponential Graphs

Equation	'a' values	' b ' values	General Shape of Graph
$y=3(4)^{x}$			
$f(x)=2^{x}$			
$y=3\left(\frac{1}{2}\right)^{x}$			
$f(x)=4(.25)^{x}$			

Day 2 - Transformations of Exponential Functions

Transformations of exponential functions is very similar to transformations with quadratic functions. Do you remember what a, h, and k do to the quadratic function? A: \qquad H : \qquad K: \qquad

Summary of Exponential Transformations

The general form of an exponential function is:

$$
f(x)=a(b)^{x-h}+k
$$

*When your graph is shifted vertically, the y-intercept becomes $\mathbf{a + k}$. *When the graph is shifted vertically, the asymptote becomes $y=k$.

Practice Identifying Transformations

Example: Describe the transformations from the parent function to the transformed function:
A. $f(x)=3^{x} \rightarrow f(x)=3^{x+3}$
B. $y=(5)^{x} \rightarrow y=1 / 2(5)^{x}-4$
C. $y=(0.4)^{x} \rightarrow y=-3(0.4)^{x}+8$
D. $f(x)=3^{x} \rightarrow f(x)=3 / 4(3)^{x-2}$
E. $y=5^{x} \rightarrow y=-1 / 2(5)^{x+2}$
F. $y=0.4^{x} \rightarrow y=2(0.4)^{x}-6$

Example: Using the graphs of $f(x)$ and $g(x)$, described the transformations from $f(x)$ to $g(x)$:
A.

B.

C.

Example: Using the function $g(x)=5 x$, create a new function $h(x)$ given the following transformations:
A. up 4 units
B. left 2 units
C. down 7 units and right 3 units
D. stretch by 3
E. reflect over x-axis and left 3
F. Shrink by $1 / 2$ and reflect over x-axis

Day 3 - Characteristics of Exponential Functions

As you can hopefully recall, you learned about characteristics of functions in Unit 2 with linear functions and Unit 5 with quadratic functions. We are going to apply the same characteristics, but this time to exponential functions.

Extremas and Asymptotes		
Maximum		
Define: Highest point of a function	Think: What is my highest point on my graph?	Write: $y=$
Minimum		
Define: Lowest point of a function.	Think: What is the lowest point on my graph?	Write: $y=$
Asymptotes		
Define: A line that the graph get closer and closer to, but never touches or crosses.	Think: What values does my graph begin to flat line towards?	Write: $y=$

Maximum:
Minimum:
Asymptote:

Maximum:
Minimum:
Asymptote:

Maximum: Minimum:
Asymptote:

Maximum: Minimum:
Asymptote:

Intervals of Increase and Decrease

Interval of Increase			
Define: The part of the graph that is rising as you read left to right.	Think: From left to right, is my graph going up?	An inequality using the x-value of the vertex	
Interval of Decrease			
Define: The part of the graph that is falling as you read from left to right.	Think: From left to right, is my graph going down?	An inequality using the x-value of the vertex	

Interval of Increase:
Interval of Decrease:

Interval of Increase:
Interval of Decrease:

End Behavior

End Behavior

Define:

Behavior of the ends of the function (what happens to the y-values or $f(x)$) as x approaches positive or negative infinity. The arrows indicate the function goes on forever so we want to know where those ends go.

Think:

As \times goes to the left (negative infinity), what direction does the left arrow go?

Think:
As \times goes to the right (positive infinity), what direction does the right arrow go?

As x approaches $-\infty, f(x)$ approaches \qquad .

As x approaches $\infty, f(x)$ approaches \qquad .

As x approaches $-\infty, f(x)$ approaches \qquad .

As x approaches $\infty, \mathrm{f}(\mathrm{x})$ approaches \qquad .

As x approaches $-\infty, \mathrm{f}(\mathrm{x})$ approaches \qquad .

As x approaches $\infty, f(x)$ approaches \qquad .

As x approaches $-\infty, f(x)$ approaches \qquad .

As x approaches $\infty, f(x)$ approaches \qquad .

