Unit 7: Exponential Functions

Day 1 – Graphing Exponential Functions

Exploring with Graphs: Graph the following equations:

$$x$$
 -3
 -2
 -1
 0
 1
 2
 3

 y
 y

	c. $y = 2^x$						
x	-3	-2	-1	0	1	2	3
у							

Type: _____

Type: _____

Type: _____

How is Equation C different from Equations A and B (you have already learned about equations A & B).

Graphing Exponential Functions

The general form of an exponential function is:

$$y = ab^x$$

Where **a** represents your starting or initial value/population and y-intercept **b** represents your growth/decay factor

When you graph exponential functions, you will perform the following steps:

Graphing Exponential Functions Steps

- 1. Create an x-y chart with 5 values for x (Use table feature to pick 5 values)
- 2. Substitute those values into the function and record the y or f(x) values.
- 3. Graph each ordered pair on a graph.

Graph the following: a. $y = 3(4)^x$

a. y = 3(4)	
x	у
1	

Y-intercept:

Asymptote:

 $h_{1}f(y)=2x$

$5. f(x) = 2^x$	
x	У
1	

Y-intercept:

Asymptote:

c. $y = 3\left(\frac{1}{2}\right)^{x}$

x	у

Y-intercept:

Asymptote:

d. $f(x) = 4(.25)^x$

x	у
	4

Y-intercept:

Asymptote:

Think about it...

You have two ways you can find the y-intercept when given an equation: $y = 3(4)^x$

1.

2.

Summary of Different Types of Exponential Graphs

Equation	'a' values	'b' values	General Shape of Graph
y = 3(4)×			
$f(x) = 2^x$			
$y = 3\left(\frac{1}{2}\right)^{x}$			
(2)			
$f(x) = 4(.25)^x$			

Day 2 – Transformations of Exponential Functions

Transformations of exp	oonential functions is very similar	to transformations with	quadratic functions.	Do you
remember what a, h,	and k do to the quadratic funct	ion?		
۸.	11.		V•	

Summary of Exponential Transformations

The general form of an exponential function is:

$$f(x) = a(b)^{x-h} + k.$$

*When your graph is shifted vertically, the y-intercept becomes a + k.

*When the graph is shifted vertically, the asymptote becomes y = k.

If **a** is **negative**, the graph...

If h is **positive**, the graph...

In the equation, I would see...

If h is negative, the graph...

In the equation, I would see...

y = a(b)x - h + k

If a is between 0 and 1 , the graph	If a is greater than 1 , the graph	If b is greater than 1	If k is positive , the graph
		If b is between 0	If k is negative , the graph
Grows	Grows	& 1	Asymptote:

Practice Identifying Transformations

Example: Describe the transformations from the parent function to the transformed function:

A.
$$f(x) = 3^x \rightarrow f(x) = 3^{x+3}$$

B.
$$y = (5)^x \rightarrow y = \frac{1}{2}(5)^x - 4$$

C.
$$y = (0.4)^x \rightarrow y = -3(0.4)^x + 8$$

D.
$$f(x) = 3x \rightarrow f(x) = \frac{3}{4}(3)x-2$$
 E. $y = 5x \rightarrow y = -\frac{1}{2}(5)x+2$

E.
$$y = 5^{x} \rightarrow y = -\frac{1}{2}(5)^{x+2}$$

F.
$$y = 0.4^{x} \rightarrow y = 2(0.4)^{x} - 6$$

Example: Using the graphs of f(x) and g(x), described the transformations from f(x) to g(x):

В.

C.

Example: Using the function $g(x) = 5^x$, create a new function h(x) given the following transformations:

A. up 4 units

B. left 2 units

C. down 7 units and right 3 units

D. stretch by 3

E. reflect over x-axis and left 3

F. Shrink by ½ and reflect over x-axis

Day 3 – Characteristics of Exponential Functions

As you can hopefully recall, you learned about characteristics of functions in Unit 2 with linear functions and Unit 5 with quadratic functions. We are going to apply the same characteristics, but this time to exponential functions.

Domain and Range

	Domain	
Define: All possible values of x	Think: How far left to right does the graph go?	Write: Smallest x ≤ x ≤ Biggest x *use < if the circles are open*
	Range	
Define: All possible values of y	Think: How far down to how far up does the graph go?	Write: y < highest y value (opens down) y > lowest y value (opens up)

Domain:

Range:

Domain:

Range:

Domain:

Domain:

Range:

Range:

Intercepts and Zeros

	Y-Intercept	
Define:	Think:	Write:
Point where the graph crosses the	At what coordinate point does the	(0, b)
y-axis	graph cross the y-axis?	
•	X-Intercept	·
Define:	Think:	Write:
Point where the graph crosses the	At what coordinate point does the	(a, 0)
x-axis	graph cross the x-axis?	
	Zero	
Define:	Think:	Write:
Where the function (y-value)	At what x-value does the graph	x =
equals 0	cross the x-axis?	

0

X-intercept: Zero: X-intercept: Zero:

Y-intercept:

Y-intercept:

X-intercept: Zero: X-intercept:

Zero:

Y-intercept: Y-intercept:

Extremas and Asymptotes

	Maximum	
Define:	Think:	Write:
Highest point of a function.	What is my highest point on my graph?	y =
	Minimum	
Define:	Think:	Write:
Lowest point of a function.	What is the lowest point on my graph?	y =
	Asymptotes	
Define:	Think:	Write:
A line that the graph get closer and closer to, but never touches or	What values does my graph begin to flat line towards?	y =
crosses.		

Maximum: Minimum:

Asymptote:

Maximum: Minimum:

Asymptote:

Maximum: Minimum:

Asymptote:

Maximum: Minimum:

Asymptote:

Intervals of Increase and Decrease

Interval of Increase Define: Think: Write: The part of the graph that is From left to right, is my graph An inequality using the x-value of the vertex rising as you read left to right. going up? **Interval of Decrease** Think: Define: Write: From left to right, is my graph The part of the graph that is An inequality using the x-value of the vertex falling as you read from left going down? to right.

Interval of Increase:

Interval of Decrease:

Interval of Increase:

Interval of Decrease:

Interval of Increase:

Interval of Decrease:

Interval of Increase:

Interval of Decrease:

Interval of Increase:

Interval of Decrease:

Interval of Increase:

Interval of Decrease:

End Behavior

End Behavior

Define:

Behavior of the ends of the function (what happens to the y-values or f(x)) as x approaches positive or negative infinity. The arrows indicate the function goes on forever so we want to know where those ends go.

Think:
As x goes to the left (negative infinity), what direction does the left arrow go?

Write: As $x \rightarrow -\infty$, $f(x) \rightarrow$ _____

Think:

As x goes to the right (positive infinity), what direction does the right arrow go?

Write: As $x \rightarrow \infty$, $f(x) \rightarrow$ _____

As x approaches $-\infty$, f(x) approaches _____.

As x approaches ∞, f(x) approaches _____.

As x approaches -∞, f(x) approaches ____.

As x approaches ∞, f(x) approaches ____.

As x approaches $-\infty$, f(x) approaches _____.

As x approaches ∞ , f(x) approaches _____.

As x approaches $-\infty$, f(x) approaches _____.

As x approaches ∞, f(x) approaches _____.