Algebra 1 Exponential Functions Notes

Applications of Exponential Functions - Growth/Decay

Review of Percentages: In order to be successful at creating exponential growth and decay functions, it is important you know how to convert a percentage to a decimal. Remember percentages are always out of 100.

25% = _____

6.5% = _____

3.05% = _____

Exponential Growth and Decay

The general form of an exponential function is:

$$y = ab^x$$

Where **a** represents your starting or initial value/population and y-intercept **b** represents your growth/decay factor

Exponential Growth is where a quantity increases over time where **exponential decay** is where a quantity decreases over time. When we discuss exponential growth and decay, we are going to use a slightly different equation than $y = ab^x$. When you simplify your equation, it will look like $y = ab^x$, but to begin, you will use the following formulas:

Exponential Growth

 $y = a(1 + r)^t$ where a>0

y = final amount a = initial amount r = growth rate (express as decimal) t = time

(1 + r) represents the growth factor

Exponential Decay

 $y = a(1 - r)^{t}$ where a>0

y = final amount a = initial amount r = decay rate (express as decimal) t = time

(1 - r) represents the decay factor

Algebra 1	Exponential Functions							
Finding Growth and Decay Rates								
Example 1: Identify the followin factor, and the growth/decay	g equations as growth or decay. Then identify the initial opercent.	amount, growth/decay						
a. $y = 3.5(1.03)^{\dagger}$	b. f(t) = 10,000(0.95) ^t							
Growth/Decay:	Growth/Decay:							
Initial Amount:	Initial Amount:							
c. g(t) = 400(0.925)t	d. $y = 2,500(1.2)^{\dagger}$							
Growth/Decay:	Growth/Decay:							
Initial Amount:	Initial Amount:							
	Growth and Decay Word Problems							

Algebra 1 Example 4: The cost of tuition at a colleg tuition after 4 years.	Exponential Functions ue is \$12,000 and is increasing at a rate of 6% per year. Find the	Notes ne cost of				
Growth or Decay:						
Starting value (a):						
Rate (as a decimal):						
Function:						
Example 5: The value of a car is \$18,000 be worth after 10 years?	and is depreciating at a rate of 12% per year. How much wi	ll your car				
Growth or Decay:						
Starting value (a):						
Rate (as a decimal):						
Function:						
Summary of Exponential Word Problems						

Creating a Growth Function Given a Percentage Rate

The number of chickens in the farm of Sunny House is currently 2,400. The farm grows at an annual rate of 15%. How many chickens will be there in 7 years?

Growth: y = a(1 + r)^t Increase Grow Appreciate

Gains

Creating a Decay Function Given a Percentage Rate

A limousine costs \$75,000 new but depreciates at a rate of 23% per year. What is the value of the limousine after five years?

Decay: y = a(1 - r)^t
Decreases
Decays
Depreciates
Loses

Algebra 1 Exponential Functions Notes

Compound Interest

Compound Interest is interest earned or paid on both the principal and previously earned interest.

Compound Interest

$$A = P(1 + \frac{r}{n})^{nt}$$

A = balance after t years

P = Principal (original amount) r = interest rate (as a decimal)

n = number of times interest is compounded per year

t = time (in years)

Example 1: Write a compound interest function that models an investment of \$1000 at a rate of 3% compounded quarterly. Then find the balance after 5 years.

Р	=			

Example 2: Write a compound interest function that models an investment of \$18,000 at a rate of 4.5% compounded annually. Then find the balance after 6 years.

Example 3: Write a compound interest function that models an investment of \$4,000 at a rate of 2.5% compounded monthly. Then find the balance after 10 years.

P = _____

r = _____

n = _____

t = _____